Разработка грунта вручную в траншеях: земляные работы без участия техники. Способы разработки грунта Скальный грунт ручная разработка

Общие сведения о грунтах

Грунт - горные породы, почвы, техногенные образования, представляющие собой многокомпонентную и многообразную геологическую систему и являющиеся объектом инженерно-хозяйственной деятельности человека .

Грунты могут служить:

  • 1) материалом оснований зданий и сооружений;
  • 2) средой для размещения в них сооружений;
  • 3) материалом самого сооружения.

Грунт скальный - грунт, состоящий из кристаллитов одного или нескольких минералов, имеющих жесткие структурные связи кристаллизационного типа.

Грунт полускальный - грунт, состоящий из одного или нескольких минералов, имеющих жесткие структурные связи цементационного типа.

Условная граница между скальными и полускальными грунтами принимается по прочности на одноосное сжатие (R c 5 МПа - скальные грунты, R c 5 МПа - полускальные грунты).

Грунт дисперсный - грунт, состоящий из отдельных минеральных частиц (зерен) разного размера, слабосвязанных друг с другом; образуется в результате выветривания скальных грунтов с последующей транспортировкой продуктов выветривания водным или эоловым путем и их отложения.

Грунтами называют породы, залегающие в верхних слоях земной коры.

Различают грунты:

  • · песчаные (песок, супесь);
  • · глинистые (глины, суглинки);
  • · скальные (изверженные, метаморфические и осадочные);
  • · растительные;
  • · лессовые.

Свойства грунтов зависят от условий образования, структуры и состава пород.

Для сравнительной оценки горных пород по прочности в нашей стране широко используется шкала М.М. Протодьяконова (табл. 1), в соответствии с которой прочность породы оценивается коэффициентом крепости f - безразмерной величиной, равной одной десятой временного сопротивления породы сжатию, измеренного в МПа.

Таблица 1

Характеристика горных пород

Степень крепости

Коэффициент

крепости, f

В высшей степени крепкие

Очень крепкие

Довольно крепкие

Довольно мягкие

Землистые

Плавучие

В отечественной практике для оценки трудности разработки грунтов используется один из следующих показателей: сопротивление образцов грунта сжатию; удельное сопротивление грунта копанию; удельная работа внедрения в грунт плоского штампа (табл. 2).

Таблица 2

Классификация грунтов по трудности разработки

При планировании земляных работ чаще всего прибегают к понятию «категории грунта», для земляных сооружений используют грунты I-IV категорий, отличающиеся друг от друга сопротивлением сжатию. Строительные нормы и правила содержат подробные рекомендации, какими машинами следует разрабатывать грунты каждой из категорий.

Более универсален показатель работы, не зависящий от типа землеройного органа и других особенностей машин для земляных работ. В качестве единицы измерения прочности грунта принимается энергия удара груза массой 2,5 кг, падающего с высоты 0,4 м, которая равна 9,81 Дж. Экспериментально доказано, что работа, затраченная на погружение круглого стержня сечением 1 см 2 в грунт на глубину 10 см, пропорциональна прочности последнего. Для экспресс-оценки прочности грунта этим методом применяется плотномер ДорНИИ (рис. 1), названный по имени института, в котором был разработан.

Получили распространение следующие способы разрушения грунтов:

  • · механический , при котором отделение грунта от массива осуществляется ножевым или ковшовым рабочим органом машины;
  • · гидравлический , при котором грунт разрушается и удаляется струей воды; при работе водой применяется всасывание размытого грунта и его удаление из зоны забоя по пульпопроводу;
  • · взрывной , при котором грунт разрушается давлением газов, выделяющихся при взрыве;
  • · термический, основанный на растрескивании поверхности грунта в результате быстрого и неравномерного нагрева, например скоростной струей высокотемпературных газов.

Применяются и комбинированные методы разработки грунтов. Например, гидравлический способ может сочетаться с механическим, механический с термическим и т. д.

Основным объектом разработки в строительстве являются песчаные и глинистые, а также крупнообломочные и полускальные грунты, покрывающие большую часть земной поверхности.

Землеройные машины рассчитаны на разработку главным образом этих грунтов. грунт горный порода разрыхление

Мерзлыми называют все виды грунтов, если они имеют отрицательную температуру и содержат лед. К многолетнемерзлым относятся грунты, находящиеся в непрерывно мерзлом состоянии в течение более 3 лет. По существующей классификации мерзлые грунты делятся на твердомерзлые (обладающие наибольшей механической прочностью), пластично-мерзлые, которые сжимаются под нагрузкой сыпучемерзлые. Разработка рассмотренных мерзлых грунтов требует определенных затрат энергии. При этом применяются три группы способов разработки; защита от замерзания, оттаивание и механическое разрушение.

Разработка рассмотренных мерзлых грунтов требует определенных затрат энергии. При этом применяются три группы способов разработки; защита от замерзания, оттаивание и механическое разрушение.

Основными показателями мерзлых грунтов являются повышенная механическая прочность, пластические деформации, пучинистость и повышенное электросопротивление , величина которых зависит от температуры, влажности и вида грунта. С понижением температуры глубина промерзания увеличивается, что вызывает возрастание механической прочности грунта, сопротивления резанию и копанию, а значит уменьшение производительности землеройных машин.

Грунты характеризуются многокомпонентным составом и минерально-дисперсным строением, а также непрерывным изменением физико-механических свойств. Грунт состоит из совокупности твердых минеральных частиц (зерен), находящихся во взаимном контакте. Цементирующий материал между частицами отсутствует, так как грунт имеет поровое строение. Поры заполнены жидкой (вода) и газообразной (воздух, водные пары, углекислый газ) фазами, находящимися в свободном и связанном состоянии. Вода может быть и в твердом состоянии (лед), что резко изменяет свойства грунта. В полностью водонасыщенном грунте не содержится газа, такой грунт является двухкомпонентной системой. Неводонасыщенный грунт представляет трехкомпонентную систему. В природе наиболее распространены трехкомпонентные неоднородные грунты, представленные твердыми частицами и заполнителями пор между ними, что затрудняет их разработку. Совокупность твердых частиц и связанной воды составляет скелет грунта, определяющий свойства всей системы. Существенное влияние на свойства грунта оказывает минералогический состав твердых частиц, их форма, размеры и степень окатанности. Грунты состоят из частиц одной или нескольких фракций. Количественное соотношение минеральных частиц различной формы характеризует гранулометрический состав грунтов (таблица 3)

Таблица 3

Классификация пород по гранулометрическим элементам (по В.В. Охотину)

Отдельные фракции

название

Валуны окатанные и камни

угловатые

  • 180 см
  • 80…40
  • 40…20

окатанная,

угловатый

крупный щебень

щебень, крупная

мелкий щебень,

мелкая галька

  • 20…10 см
  • 10….6

окатанный

очень мелкий

  • 40…20 мм
  • 20…10
  • 2…1 мм
  • 1…0,5
  • 0,5…0,25
  • 0,25…0,1
  • 0,1…0,05

0,05...0,001 мм

Проходка траншей для прокладки трубопроводов осуществляется в горных породах разнообразного состава и свойств. Основной объем проходки траншей выполняется в рыхлых горных породах, называемых грунтами , значительно меньше проходится в крепких скальных породах. Скальные породы отличаются высокой крепостью, большой сопротивляемостью деформациям, имеющим в основном упругий характер.

Основные физико-механические свойства грунтов , влияющие на технологию производства земляных работ, трудоемкость и стоимость следующие:

  • · в массиве (естественном состоянии) - гранулометрический состав, плотность, влажность;
  • · в разрыхленном состоянии - гранулометрический состав, плотность, прочность, разрыхляемость.

Гранулометрический состав является одним из основных показателей физического состояния грунтов.

Грунтовые частицы крупностью менее 0,005 мм называют глинистыми;

  • 0,005…0,05 мм - пылеватыми;
  • 0,05…2 мм - песчаными; зерна м куски грунта крупностью 0,2…20 мм - гравием;
  • 20…200 мм - галькой или щебнем и более 200 мм валунами или камнями.

Гранулометрический состав определяет метод и способ разработки грунта, а также применение его при возведении земляных сооружений и объектов.

Прочность грунтов характеризуется их способностью сопротивляться внешним воздействиям при разработке.

Разрыхляемость - это способность грунта увеличиваться в объеме при разработке. Увеличение объема грунта характеризуется коэффициентами первоначального К р и остаточного К р.о разрыхления.

Коэффициент первоначального разрыхления К р представляет собой отношение объема разрыхленного грунта к его объему в естественном состоянии и составляет: для песчаных грунтов - 1,08…1,17, глинистых - 1,24…1,3.

Коэффициент остаточного разрыхления К р.о характеризует остаточное увеличение объема грунта после его уплотнения. под действием массы вышележащих слоев, дождя, движения транспорта, механического уплотнения.

Плотность грунта влияет на выбор механизмов для разработки транспортирования его. Так, разработка песчаных и глинистых грунтов может производиться скреперами, бульдозерами, грейдерами полускальных и скальных - экскаватором после предварительного разрыхления.

Влажность грунта определяется отношением массы воды в грунте к массе твердых частиц грунта (в процентах). При влажности до 5% грунты считаются сухими, при влажности более 30% - мокрыми как правило, влажные грунты разрабатываются экскаваторами со сменным оборудованием драглайном или обратной лопатой.

По трудности разработки грунты делятся на группы. При этом деление на группы учитывает разработку грунтов с применением средств механизации и вручную в немерзлом и мерзлом состояниях.

Так, при разработке немерзлых грунтов механизированным способом в зависимости от трудности их разработки они разделены на шесть групп:

  • 1 - гравийно-галечные грунты с частицами размером до 80 мм (p=1,75 т/м 2), грунты растительного слоя, песок, суглинок;
  • 2 - гравийно-галечные грунты с частицами размером более 80 мм (p = 1,95 т/м 2), глина жирная, песок барханы, строительный мусор, торф с корнями;
  • 3 - глина мягкая (p=1,96 т/м 2), супесок, суглинок, ракушечник, сцементированный строительный мусор;
  • 4 - смесь гальки, тяжелая глина (p=1,95…2.15 т/м 2), песок с содержанием валунов массой более 50 кг - 10…15%;
  • 5 - суглинок тяжелый с валунами массой более 50 кг - до 15% известняк;
  • 6 - супесок и суглинок с содержанием валунов массой более 50 кг - 15…30% по объему.

Разработка мерзлых грунтов в разрыхленном виде одноковшовыми экскаваторами предусматривает деление их на три группы

При разработке вручную немёрзлые грунты разделены на семь групп, мерзлые - на четыре.

В зависимости от группы установлены нормы времени и расценки на разработку грунта в измерителях, указанных в ЕНиРе.

Эффективность работы землеройных и землеройно-транспортных машин и механизмов при разработке грунтов из массива определяется их прочностными свойствами, плотностью, влажностью и абразивностью. На разрыхленных грунтах работа машин и механизмов зависит в основном от размеров кусков, коэффициента разрыхления, массы, прочности, плотности абразивности грунтов.

Литература

Основная:

  • 1. Грунты. Классификация. Межгосударственный стандарт РФ. Дата введения 1996-07-01.
  • 2. Крец В.Г. Машины и оборудование для строительства и экс-плуатации газонефтепроводов и хранилищ: учебное пособие / В.Г. Крец, А.В. Рудаченко, В.А. Шмурыгин. - Томск: Изд-во Томского политехнического университета, 2011(2013). - 329 с.
  • 3. В.И. Минаев. Машины для строительства магистральных трубопроводов. Учебник. - М.: Недра, 1985.- 440 с.
  • 4. Строительство магистральных трубопроводов. Справочник / В.Г. Чирсков, В.Л. Березин, Л.Г. Телегин и др. - М: Недра, 1991. - 475 с.
  • 5. С.А. Горелов Машины и оборудование для сооружения газонефте-проводов. Уч. пособие.- М.: РГУ нефти и газа им. И.М. Губкина, 2000. - 122 с.
  • 6. Лукьянов В.Г. Технология проведения горно-разведочных вы-работок: учебник / В.Г. Лукьянов, А.В. Панкратов, В.А. Шмурыгин; Томский политехнический университет. - Томск: Изд-во Томского политехнического ун-та, 2011. - 550 с.

Дополнительная:

  • 1. Каталог машин для строительства трубопроводов. Изд. СКБ «Газ-строймашина», 1992.
  • 2. Александров М.П. Грузоподъёмные машины. - М.: Высшая школа.
  • 3. Домбровский Н.Г., Гальперин М.И. Строительные машины. Часть I-III. - М.: Высшая школа, 1986.
  • 4. Горнопроходческие машины и комплексы: Учеб. Для вузов/Л.Г. Грабчак, В.И. Несмотряев, В.И. Шендеров, Б.Н. Кузовлев. - М.: Недра, 1990. - 336 с.
  • 5. Машины для земляных работ / Д.П. Волков, В.Я. Крикун, П.Е. Тотолин и др. - М.: Машиностроение, 1992. - 448 с.
  • 6. Машины для земляных работ / Н.Г. Гаркази, В.И. Арипченко, В.В. Карпов и др. - М.: Высшая школа, 1992. - 335 с.
  • 7. Шмурыгин В.А. Проведение горноразведочных выработок: учебное пособие / В.А. Шмурыгин; Томский политехнический университет. - Томск: Изд-во Томского политехнического ун-та, 2012. - 207 с.
  • 8. Интернет-ресурсы.

Выбор способа производства земляных работ зависит от свойств грунта, объемов работ, вида земляных сооружений, гидрогеологических условий и других факторов. Технологический процесс выполнения земляных работ состоит из разработки грунта, транспортировки, укладки в отвал или насыпь, уплотнения и планировки. Для механизации земляных работ применяют одноковшовые строительные экскаваторы с гибкой и жесткой подвеской рабочего оборудования в виде прямой и обратной лопаты, драглайна, грейфера, землеройно-планировочного, планировочного и погрузочного устройств; экскаваторы непрерывного действия, к которым относятся цепные многоковшовые, цепные скребковые, роторные многоковшовые и роторные бесковшовые (фрезерные); бульдозеры, скреперы, грейдеры (прицепные и самоходные), грейдеры-элеваторы, рыхлители, бурильные машины. В комплект машин для механизированной разработки грунта кроме ведущей землеройной машины включаются также вспомогательные машины для транспортировки грунта, подчистки выемки дна, уплотнения грунта, отделки откосов, предварительного рыхления грунта и т. п. в зависимости от вида работ.

Разработка грунта одноковшовыми экскаваторами

В промышленном и гражданском строительстве применяют экскаваторы с ковшом вместимостью от 0,15 до 4 м3. При выполнении больших объемов земляных работ на гидротехническом строительстве применяются более мощные экскаваторы с вместимостью ковша до 16 м3 и более.

Экскаваторы на колесном ходу рекомендуется применять при работах на грунтах с высокой несущей способностью при рассредоточенных объемах работ, при работах в городских условиях с частыми перебазировками; экскаваторы на гусеничном ходу применяют при сосредоточенных объемах работ при редких перебазировках, при работах на слабых грунтах и разработке скальных пород; навесные экскаваторы на пневмоколесных тракторах - при рассредоточенных объемах работ и при работе в условиях бездорожья.

Разработка грунта одноковшовыми экскаваторами ведется проходками. Число проходок, забоев и их параметры предусматриваются в проектах и технологических картах производства земляных работ для каждого конкретного объекта в соответствии с параметрами земляных сооружений (по рабочим чертежам) с оптимальными рабочими размерами оборудования экскаваторов.

Одноковшовые экскаваторы относятся к машинам цикличного действия. Время рабочего цикла определяется суммой отдельных операций: продолжительность заполнения ковша, поворот на выгрузку, разгрузку и поворот в забой. Наименьшие затраты времени на выполнение рабочего цикла обеспечиваются при следующих условиях:

  • ширина проходок (забоев) принимается с таким расчетом, чтобы обеспечить работу экскаватора со средним поворотом не более 70 градусов;
  • глубина (высота) забоев должна быть не меньше длины стружки грунта, необходимой для заполнения ковша с шапкой за один прием копания;
  • длина проходок принимается с учетом возможно меньшего числа вводов и выводов экскаватора в забой и из забоя.

Забоем называется рабочая зона экскаватора. К этой зоне относится площадка, где размещается экскаватор, часть поверхности разрабатываемого массива и место установки транспортных средств или площадка для укладки разрабатываемого грунта. Геометрические размеры и форма забоя зависят от оборудования экскаватора и его параметров, размеров выемки, видов транспорта и принятой схемы разработки грунта. В технических характеристиках экскаваторов любой марки приведены, как правило, максимальные их показатели: радиусы резания, выгрузки, высота выгрузки и др. При производстве земляных работ принимают оптимальные рабочие параметры, составляющие 0,9 максимальных паспортных данных. Оптимальная высота (глубина) забоя должна быть достаточной для заполнения ковша экскаватора за одно черпание, она должна быть равна вертикальному расстоянию от горизонта стоянки экскаватора до уровня напорного вала, умноженному на коэффициент 1,2. Если высота забоя относительно мала (например, при разработке планировочной выемки), целесообразно использовать экскаватор вместе с бульдозером: бульдозер разрабатывает грунт и перемещает его к рабочему месту экскаватора, затем окучивает грунт, обеспечивая при этом достаточную высоту забоя. Экскаватор и транспортные средства должны быть расположены так, чтобы средний угол поворота экскаватора от места заполнения ковша до места его выгрузки был минимальным, так как на поворот стрелы расходуется до 70% рабочего времени цикла экскаватора.

По мере разработки грунта в забое экскаватор перемещается, отработанные участки называются проходками. По направлению движения экскаватора относительно продольной оси выемки различают продольный (с лобовым или торцовым забоем) и поперечный (боковой) способы разработки. Продольный способ состоит в разработке выемки проходками, направление которых выбирается по наибольшей стороне выемки. Лобовой забой применяется при разработке съезда в котлован и при рытье начала выемки на крутых косогорах. При лобовом забое грунт разрабатывается на всю ширину проходки. Торцевой забой применяется при разработке выемок ниже уровня стоянки экскаватора, при этом экскаватор, передвигаясь задним ходом по поверхности земли или на уровне, расположенном выше дна выемки, разрабатывает торец выемки. Боковые забои применяются для разработки выемки прямой лопатой, при этом пути транспортных средств устраиваются параллельно оси перемещения экскаватора или выше подошвы забоя. При боковом способе полная ширина проходки может быть получена путем последовательной разработки ряда проходок. Поперечным (боковым) способом разрабатывают выемки с отсыпкой грунта в направлении, перпендикулярном оси выемки. Поперечный способ применяется при разработке протяженных нешироких выемок с отсыпкой кавальеров или при устройстве насыпей из боковых резервов.

Некоторые виды выемок (например, планировочные) можно разрабатывать боковым забоем с движением транспорта на одном уровне с экскаватором. Иногда для перехода к разработке с боковым забоем необходимо вначале отрывать так называемую пионерную траншею, которую экскаватор начинает разрабатывать, спустившись на дно забоя по пандусу. Если высота выгрузки экскаватора больше или равна сумме глубины выемки, высоты борта самосвала и «шапки» над бортом (0,5 м), пионерную траншею разрабатывают боковым забоем при движении транспорта по дневной поверхности на расстоянии не менее 1 м от края выемки. При значительных в плане размерах выемки ее разрабатывают поперечными проходками вдоль меньшей стороны, при этом обеспечивается минимальная длина пионерной траншеи, что позволяет организовать наиболее производительное кольцевое движение транспорта. Выемки, глубина которых превосходит максимальную глубину забоя для данного типа экскаватора, разрабатывают в несколько ярусов. При этом нижний ярус разрабатывают аналогично верхнему, а автомобили подают к экскаватору так, чтобы ковш находился на кузов сзади. Трасса движения автомобиля в этом случае должна быть параллельна оси проходки экскаватора, но направлена в противоположную сторону.

Экскаватор, оборудованный обратной лопатой, применяется при разработке грунта ниже уровня стоянки и наиболее часто используется при рытье траншей для укладки подземных коммуникаций и небольших котлованов под фундаменты и другие сооружения. При работе с обратной лопатой также применяют торцовый или боковой забой. Наиболее целесообразно применять экскаватор с обратной лопатой для разработки котлованов глубиной не более 5,5 м и траншей до 7 м. Жесткое крепление ковша обратной лопаты дает ему возможность рыть узкие траншеи с вертикальными стенками. Глубина разрабатываемых узких траншей больше, чем глубина котлованов, так как экскаватор может опускать стрелу с рукоятью в самое нижнее положение, сохраняя устойчивость.

Экскаватор с рабочим оборудованием драглайн применяется при разработке больших и глубоких котлованов, при возведении насыпи из резервов и т. п. Преимуществами драглайна являются большой радиус действия и глубина копания до 16-20 м, возможность разрабатывать забои с большим притоком грунтовых вод. Драглайн разрабатывает выемки торцовыми или боковыми проходками. Для торцовой и боковой проходок организация работ драглайна аналогична работе обратной лопаты. При этом сохраняется такое же соотношение максимальной глубины резания. Драглайн обычно передвигается между стоянками на 1/5 длины стрелы. Разработка грунта драглайном чаще всего производится в отвал (односторонний или двусторонний), реже - на транспорт.

Экскаваторы отрывают котлованы и траншеи на глубину, несколько меньшую проектной, оставляя так называемый недобор. Недобор оставляют, чтобы избежать повреждения основания и не допускать переборов грунта, он составляет обычно 5-10 см. Для повышения эффективности работы экскаватора применяют скребковый нож, насаженный на ковш. Это приспособление позволяет механизировать операции по зачистке дна котлованов и траншей и вести их с погрешностью не более плюс-минус 2 см, что исключает необходимость ручных доработок.

Разработка грунта экскаваторами непрерывного действия осуществляется при отсутствии в грунтах камней, корней и т. п. До начала работы вдоль трассы траншеи бульдозером планируется полоса земли шириной не менее ширины гусеничного хода, затем разбивается и закрепляется ось траншеи, после чего начинается отрывка ее со стороны низких отметок (для стока воды). Многоковшовые экскаваторы разрабатывают траншеи ограниченных размеров и, как правило, с вертикальными стенками.

Разработка грунта землеройно-транспортными машинами

Основными видами землеройно-транспортных машин являются бульдозеры, скреперы и грейдеры, которые за один цикл разрабатывают грунт, перемещают его, разгружают в насыпь и возвращаются в забой порожняком.

Производство земляных работ бульдозерами

Бульдозеры применяются в строительстве для разработки грунта в неглубоких и протяженных выемках и резервах для перемещения его в насыпи на расстояние до 100 м (при применении более мощных машин расстояние перемещения грунта может быть увеличено), а также на расчистке территории и планировочных работах, на зачистке оснований под насыпи и фундаменты зданий и сооружений, при устройстве подъездных путей, разработке грунта на косогорах и т. п.

Рис. 7. :
а - обычное резание; б - гребенчатое резание

В практике земляных работ имеется несколько способов резания грунта бульдозером (рис. 7):

  • обычное резание - нож вначале заглубляется на предельную для данного грунта глубину и по мере загрузки постепенно поднимается, так как растет сопротивление призмы волочения, на которое расходуется тяговое усилие трактора;
  • гребенчатое резание - отвал заполняется несколькими чередующимися заглублениями и поднятиями.

Гребенчатая схема позволяет уменьшить длину резания за счет увеличения средней глубины стружки. Кроме того, при каждом заглублении ножа скалывается грунт под призмой волочения и на отвале уплотняется уже срезанный грунт. Благодаря этому сокращается время резания и увеличивается объем грунта на отвале.

При производстве земляных работ бульдозерами успешно применяется способ резания под уклон, основанный на рациональном использовании тягового усилия трактора. Суть его в том, что при движении трактора под уклон высвобождается часть тягового усилия, необходимого для перемещения самой машины, за счет чего грунт можно разрушать более толстым слоем. При работе бульдозера под уклон облегчается скалывание грунта, снижается сопротивление призмы волочения, которая движется частично под действием собственного веса. При отсутствии естественного уклона его можно создавать первыми проходками бульдозера. При работе под уклон 10-15 градусов производительность возрастает примерно в 1,5-1,7 раза.


Рис. 8. :
а - однослойным зарезанием; б - траншейным зарезанием. Цифрами указана очередность резания

Бульдозер работает по схемам, приведенным на рис. 8. Однослойным резанием с перекрытием полос на 0,3-0,5 м снимают растительный слой. Затем бульдозер перемещает грунт в отвал или промежуточный вал и возвращается к месту нового резания без разворота, задним ходом (челночная схема), или с двумя поворотами. Траншейная разработка производится с оставлением перемычек шириной 0,4 м в связных грунтах и 0,6 м в малосвязных. Глубина траншей принимается 0,4-0,6 м. Перемычки разрабатываются после прохода каждой траншеи.

Производство земляных работ скреперами

Эксплуатационные возможности скреперов позволяют использовать их при отрывке котлованов и планировке поверхностей, при устройстве различных выемок и насыпей. Скреперы классифицируются:

  • по геометрическому объему ковша - малый (до 3 м3), средний (от 3 до 10 м3) и большой (свыше 10 м3);
  • по роду агрегатирования с тягачом - прицепные и самоходные (в том числе полуприцепные и седельные);
  • по способу загрузки ковша - загружаемые за счет силы тяги тягача и с механической (элеваторной) загрузкой;
  • по способу разгрузки ковша - со свободной, полупринудительной и принудительной разгрузкой;
  • по способу привода рабочих органов - гидравлические и канатные.

Скреперами ведут разработку, транспортирование (дальность транспортирования грунта колеблется от 50 м до 3 км) и укладку песчаных, супесчаных, лессовых, суглинистых, глинистых и других грунтов, не имеющих валунов, а примесь гальки и щебня не должна превышать 10%. В зависимости от категории грунтов резать их наиболее эффективно на прямолинейном участке пути при движении под уклон 3-7 градусов. Толщина разрабатываемого слоя в зависимости от мощности скрепера колеблется от 0,15 до 0,3 м. Разгружают скрепер на прямолинейном участке, при этом поверхность грунта разравнивают днищем скрепера.


Рис. 9. :
а - с наполнением ковша стружкой постоянной толщины; б - с наполнением ковша стружкой переменного сечения; в - гребенчатый способ наполнения ковша стружкой; г - наполнение ковша способом клевков

Различают несколько способов срезания стружки при работе скрепера (рис. 9):

  • стружкой постоянной толщины. Способ применяют при планировочных работах;
  • стружкой переменного сечения. При этом грунт срезается с постепенным уменьшением толщины стружки по мере наполнения ковша, т. е. с постепенным выглублением ножа скрепера к концу набора;
  • гребенчатым способом. При этом грунт срезается с попеременным заглублением и постепенным подъемом ковша скрепера: на разных стадиях толщина стружки меняется от 0,2-0,3 м до 0,08-0,12 м;
  • клевками. Наполнение ковша осуществляется путем многократного заглубления ножей скрепера на возможно большую глубину. Способ применяют при работе в рыхлых сыпучих грунтах.

В зависимости от размеров земляного сооружения, взаимного расположения выемок и насыпей применяют различные схемы работы скреперов. Наиболее распространенной является схема работы по эллипсу. При этом скрепер каждый раз поворачивается в одну сторону.


Рис. 10. :
а - траншейно-гребенчатый; б - ребристо-шахматный

При работе в широких и длинных забоях наполнение ковша скрепера осуществляется траншейно-гребенчатым и ребристо-шахматным способами. При траншейно-гребенчатом способе (рис. 10) разработка забоя ведется от края резерва или выемки параллельными полосами постоянной глубины 0,1-0,2 м, одинаковыми по длине. Между полосами первого ряда оставляют полосы несрезанного грунта - гребни, по ширине равные половине ширины ковша. Во втором ряду проходов забирают грунт на полную ширину ковша, срезая гребень и образовывая под ним траншею. Толщина стружки в этом случае в середине ковша 0,2-0,4 м, а по краям 0,1-0,2 м.

При ребристо-шахматном способе (рис. 10) разработка забоя производится от края выемки или резерва параллельными полосами так, чтобы между проходками скрепера оставались полосы не срезанного грунта, равные по ширине половине ширины ковша.

Второй ряд проходок разрабатывают, отступая от начала первого ряда на половину длины проходки первого ряда. Работу скрепера следует сочетать с работой бульдозера, используя их для разработки повышенных участков и перемещения грунта на небольшие расстояния в пониженные места.

Производство земляных работ грейдерами

Грейдеры используют при планировке территории, откосов земляных сооружений, зачистке дна котлованов и отрывке канав глубиной до 0,7 м, при возведении протяженных насыпей высотой до 1 м и нижнего слоя более высоких насыпей из резерва. Автогрейдерами профилируют дорожное полотно, проезды и дороги. Наиболее эффективно использовать автогрейдеры при длине проходки 400-500 м. Плотные грунты до разработки грейдером предварительно разрыхляются. При возведении насыпи из разрабатываемого резерва наклонный нож сдвигает срезанный грунт в сторону насыпи. При следующей проходке грейдера этот грунт перемещается еще дальше в том же направлении, поэтому целесообразно организовывать работу двумя грейдерами, один из которых срезает, а другой перемещает срезанный грунт.

При возведении насыпей и профилированного дорожного полотна зарезание грунта начинают от внутренней бровки резерва и ведут послойно: сначала вырезают стружку треугольной формы, затем до конца слоя стружка получается прямоугольной. При разработке широких резервов в грунтах, не требующих предварительного разрыхления, зарезание начинают от внешней бровки резерва и ведут послойно, при всех проходах стружка треугольной формы; возможен другой способ: стружка при этом получается треугольной и четырехугольной формы.

При выполнении различных операций углы наклонов грейдера изменяются в следующих пределах: угол захвата - 30-70 градусов, угол резания - 35-60 градусов, угол наклона - 2-18 градусов. В практике строительства применяется несколько способов укладки грунта:

  • грунт укладывают слоями, отсыпая его от бровки к оси дороги (профилировочные работы в нулевых отметках при высоте насыпи, не превышающей 0,1-0,15 м);
  • валики размещают один возле другого с соприкосновением их только основаниями (отсыпка насыпей высотой 0,15-0,25 м);
  • каждый последующий валик частично прижимают к ранее уложенному, перекрывая его основанием на 20-25%; гребни этих двух валиков располагаются на расстоянии 0,3-0,4 м один от другого (отсыпка насыпей высотой до 0,3-0,4 м);
  • каждый последующий валик прижимается к ранее уложенному без всякого зазора; новый валик перемещают отвалом вплотную к ранее уложенному с захватом его на 5-10 см; образуется один широкий плотный вал выше первого валика на 10-15 см (отсыпка насыпей высотой до 0,5-0,6 м).

Разработка мерзлых грунтов

Мерзлые грунты обладают следующими основными свойствами: повышенной механической прочностью, пластическими деформациями, пучинистостью и повышенным электросопротивлением. Проявление этих свойств зависит от вида грунта, его влажности и температуры. Песчаные, крупнозернистые и гравийные грунты, залегающие мощным слоем, как правило, содержат мало воды и при отрицательных температурах почти не смерзаются, поэтому их зимняя разработка почти не отличается от летней. При разработке зимой котлованов и траншей в сухих сыпучих грунтах они не образуют вертикальных откосов, не пучинятся и не дают просадок весной. Пылеватые, глинистые и влажные грунты при замерзании значительно меняют свои свойства. Глубина и скорость промерзания зависит от степени влажности грунта. Земляные работы зимой осуществляются следующими методами:

  • методом предварительной подготовки грунтов с последующей их разработкой обычными способами;
  • методом предварительной нарезки мерзлых грунтов на блоки;
  • методом разработки грунтов без предварительной подготовки.

Предварительная подготовка грунта для разработки зимой заключается в предохранении его от промерзания, оттаивании мерзлого грунта и предварительном рыхлении мерзлого грунта. Наиболее простой способ защиты поверхности грунта от промерзания состоит в утеплении его термоизоляционными материалами; для этого используются торфяная мелочь, стружки и опилки, шлак, соломенные маты и т. п., которые укладываются слоем 20-40 см непосредственно по грунту. Поверхностное утепление применяют в основном для небольших по площади выемок.

Для утепления значительных по площади участков применяется механическое рыхление, при котором грунт вспахивается тракторными плугами или рыхлителями на глубину 20-35 см с последующим боронованием на глубину 15-20 см.

Механическое рыхление мерзлого грунта при глубине промерзания до 0,25 м производится тяжелыми рыхлителями. При промерзании до 0,6-0,7 м при отрывке небольших котлованов и траншей применяют так называемое рыхление раскалыванием. Ударные мерзлоторыхлители хорошо работают при низких температурах грунта, когда для него характерны хрупкие деформации, способствующие его раскалыванию под действием удара. Для рыхления грунта при большой глубине промерзания (до 1,3 м) используется дизель-молот с клином. Разработка мерзлого грунта резанием заключается в нарезке взаимно перпендикулярных борозд глубиной, составляющей 0,8 глубины промерзания. Размер блока должен быть на 10-15% меньше размера ковша экскаватора.

Оттаивание мерзлого грунта осуществляется при помощи горячей воды, пара, электрического тока или огневым способом. Оттаивание является наиболее сложным, трудоемким и дорогим способом, поэтому к нему прибегают в исключительных случаях, например, при проведении аварийных работ.



© 2000 - 2009 Oleg V. сайт™

1.53. При транспортировании по трубам абразивного грунта, вызывающего повышенный против нормы износ труб, следует учитывать, если это предусмотрено в проекте, повторную полную или частичную укладку трубопроводов для гидромеханизации. В этом случае возврат труб первичной и последующих укладок следует принимать в размере 65% затрат на ремонт и износ, приведенных в , на объем работ, предусмотренных проектом.

Размер и порядок расчета по возврату труб при укладке дюкеров устанавливается по проектным данным.

2.2. Объем работ по устройству выездов и съездов в котлованы, въездов на насыпи, а также уширению насыпей для разворота автомашин при отсыпке насыпей на болотах следует определять дополнительно.

2.3. Объем работ при механизированной разработке котлованов и траншей при строительстве зданий и сооружений, выемок при строительстве автомобильных и железных дорог, следует определять по проектным данным за вычетом объема недобора грунта.

Объем недобора и способ его разработки следует принимать в соответствии с главой СНиП III-8-76 "Земляные сооружения" и проектом организации строительства.

2.4. При определении объема разработки мокрых грунтов следует считать, что к мокрым грунтам относятся как грунты, лежащие ниже уровня грунтовых вод, так и грунты, расположенные выше этого уровня: на 0,3 м-для песков крупных, средней крупности и мелких, на 0,5 м - для песков пылеватых и супесей и на 1 м- для суглинков, глин и лёссовых грунтов.

Наименование работ

Коэффициенты к профильному объему насыпи при типе болота
I II III
1. Отсыпка подводной и надводной части насыпи на болотах протяженностью до 1 км 1,02 1,06 1,1
2. То же, на болотах протяженностью св. 1 км 1,13 1,14 1,19

П р и м е ч а н и е. Коэффициенты определены с учетом объема грунта, расположенного ниже плоскости, возвышающейся над поверхностью болота I типа на 0,5 м, болота II и III типа - на 0,8 м.

2.19. Объемы работ, выполняемых способом гидромеханизации, принимаются:

а) при укладке грунта в отвалы- по проектному объему полезной выемки с учетом допускаемых переборов;

б) при укладке грунта в сооружение или в штабель- по проектному объему земляного сооружения или штабеля с учетом общих потерь грунта.

При намыве первого слоя (яруса) со свободными или пляжными откосами, на заболоченных или затопленных территориях, насыпей с откосами, подлежащими креплению, и в других случаях следует учитывать объем грунта, намытого за пределы проектного профиля, используемого в отдельных случаях для устройства обвалования, оснований под трубопроводы, насыпей подъездных автодорог и технологического уширения гребня. В этом случае намытый за пределы проектного профиля грунт следует учитывать в сметах с отнесением этих затрат на стоимость проектного объема земляного сооружения или штабеля;

в) при укладке грунта в ковш-накопитель (при работе с разрывом технологического цикла) - по объему грунта, укладываемому в ковш-накопитель.

Объем грунта для намыва земляных сооружений, доставляемого средствами речного флота из подводного карьера, следует принимать на 12% больше проектного объема сооружения и с учетом потерь грунта, определяемых в соответствии с указаниями, приведенными в .

2.20 . Общие потери грунта при намыве земляных сооружений (разность объема грунта, разработанного в карьере и проектного объема насыпи штабеля), устанавливаются по проектным данным в соответствии с общесоюзными нормативными документами на возведение земляных сооружений и могут складываться из следующих потерь: на обогащение грунта карьера (при сбросе мелких частиц вместе с водой), на унос грунта течением и волнением воды, на унос грунта ветром, потери при транспортировании пульпы, на вынос грунта за пределы профильного сооружения или штабеля фильтрационной водой, перемывы, допускаемые нормами.

Размеры этих потерь определяются в процентах от проектного объема сооружения или штабеля: а) потери на обогащение грунта карьера - при необходимости его обогащения в соответствии с общесоюзными нормативными документами на возведение земляного сооружения и технологией намыва, следует устанавливать в проекте в зависимости от качества грунта карьера.

При обогащении грунта до подачи пульпы на карту намываемого сооружения к установленному в проекте размеру потерь грунта на обогащение следует дополнительно учитывать потери на сброс грунта с водой в процессе намыва сооружения или штабеля;

б) потери грунта при сбросе вместе с водой через водосбросные сооружения в процессе намыва насыпи, при отсутствии требований на обогащение грунта, следует принимать согласно средневзвешенному грануло-метрическому составу грунта карьера из расчета сброса фракции от 0,05 до 0,01 мм - 10% и фракции менее 0,01 мм - 100%. Размер этих потерь при отсутствии проектных данных следует принимать 3%;

в) потери на унос грунта течением и волнением воды при намыве подводной части насыпи, а также при намыве пойменных насыпей в период подтопления следует определять в проекте в зависимости от направления и скорости течения воды, волнового режима и грануло-метрического состава грунта (при отсутствии данных, ориентировочно следует принимать 1-2%);

г) потери грунта при гидравлическом транспортировании пульпы следует принимать в размере 0,25;

д) потери на вынос грунта фильтрационной водой за пределы проектного профиля следует принимать в размере 0,5% для крупного и средней крупности песка и 1% для мелкого и пылеватого песка;

е) потери на унос грунта ветром и на перемыв проектного профиля сооружения следует определять по п. 5.34 главы СНиП III-8-76 "Земляные сооружения. Правила производства и приемки работ".

При работе землесосных снарядов с разорванным технологическим циклом через ковши-накопители потери грунта определяются для каждого землесосного снаряда отдельно с учетом потерь грунта в каждом ковше-накопителе.

Коэффициенты к сметным нормам

Страница 2 из 16

Одной из наиболее трудоемких операций при проходке выработок является разработка грунта , выполняемая различными способами.

Выбор наиболее рационального способа проходки и назначение необходимых механизмов и оборудования во многом зависят от свойств грунта и инженерно-геологических условий строительства. При проходке подземных выработок на степень разрабатываемости грунта наибольшее влияние оказывают следующие его свойства: твердость, т. е. сопротивляемость проникновению разрушающего инструмента, вязкость - сопротивление отрыванию кусков от общей массы грунта, упругость - способность грунта быстро возвращаться в первоначальное положение после деформаций, вызванных внешними воздействиями. Кроме того, надо учитывать и такие характеристики, как выветриваемость грунтов в результате воздействия различных атмосферных агентов (воды, газов, мороза и т. д.) и трещиноватость, которая зависит от действия геологических факторов.

В настоящее время разработан ряд классификаций, подразделяющих грунты по различным признакам и свойствам (крепости, буримости и т. д.).

Разработка грунта может производиться ручным способом, с помощью ручных механизированных инструментов, взрывным способом, специальными машинами (проходческие агрегаты, комбайны), механизированными щитовыми комплексами и специальными методами (термический, гидравлический, ультразвуковой и др.).

Разработка грунта ручным способом

Ручная разработка грунта с помощью лопат, кайла и ломов ввиду большой трудоемкости и малой производительности в настоящее время применяется только в исключительных случаях, когда необходимо провести работы в небольшом объеме в слабых неустойчивых грунтах, а также при выполнении вспомогательных работ по подчистке подошвы выработки.

Разработка слабых мягких грунтов и грунтов средней крепости (f = 0,6÷1,5) производится обычно отбойными молотками , которые представляют собой пневматические ручные машины ударного действия. По массе пневматические отбойные молотки подразделяются на легкие (8 кг), средние (9-10 кг) и тяжелые (12,4 кг). Сменным рабочим инструментом, непосредственно разрушающим грунт, является пика отбойного молотка, длина и форма которой зависят от физико-механических свойств грунта. В крепких грунтах принимают короткие пики с большим углом заострения (60-80°). В вязких мягких грунтах типа глин вместо пики применяют лопатку с клинообразным заострением.

Достоинства отбойных молотков : простота конструкции и безопасность в работе, небольшая стоимость, отработанный сжатый воздух позволяют производить частичную вентиляцию выработки. Недостатки : необходимость создания компрессорного хозяйства, малый коэффициент полезного действия (менее 0,15), использование дорогой энергии сжатого воздуха, шум при работе, пылеобразование и вибрация.

Кроме пневматичесских отбойных молотков, находят применение и электрические, которые исключают недостатки пневматических, но имеют большую массу (до 12 кг), подвержены нагреванию, менее надежны в эксплуатации и не рекомендуются к применению в обводненных грунтах ввиду возможности поражения людей электрическим током. В связи с этим в практике подземного строительства пневматические отбойные молотки получили наибольшее распространение.

Разработка грунта буровзрывным способом

Наиболее универсальным и эффективным способом разрушения скальных и полускальных грунтов является взрывание. Применение этого способа охватывает грунты с широким диапазоном крепости и ввиду экономичности, получило широкое распространение. Взрывной способ проходки подразумевает бурение шпуров, служащих для размещения зарядов взрывчатых веществ (ВВ). Обычно, говоря о взрывном способе, употребляют термин «буровзрывные работы» . На строительстве тоннелей и метрополитенов до 65% общего объема горнопроходческих работ выполняются буровзрывным способом. Сущность буровзрывного способа состоит в том, что в забое выработки с помощью специальных механизмов пробуривается на некоторую глубину (глубину заходки) определенное количество шпуров (шпур - цилиндрическая выработка, служащая для размещения зарядов). Цикл буровзрывных работ состоит из отдельных последовательных во времени операций, производимых для разрушения забоя на глубину заходки.

При сооружении тоннелей правильное ведение буровзрывных работ имеет очень важное значение. Эффективным называется такой взрыв, который обеспечивает расчетное продвижение забоя при максимальном использовании длины шпуров и оконтуривание выработки, приближающееся к проектному очертанию. Кроме этого, взрыв должен обеспечить равномерное и достаточное (для удобства погрузки) дробление скалы и возможно меньший разлет обломков породы при взрыве (кучность взрыва). Оптимальные параметры буровзрывных работ обеспечиваются в основном за счет рационального расположения шпуров, правильного выбора типа и количества ВВ, конструкции зарядов и способа взрывания.

Типы шпуров . При проходке тоннелей способом сплошного забоя взрываемый грунт имеет только одну свободную плоскость обнажения (лоб забоя). Для более эффективного использования энергии взрыва, уменьшения расхода ВВ и снижения вредного сейсмического воздействия на окружающий грунтовый массив необходимо образовывать дополнительные плоскости обнажения.

Качество взрыва в значительной мере зависит от расположения шпуров в забое. Располагаемые в забое выработки шпуры разделяют (рис. 1.12) на врубовые (1), отбойные (вспомогательные) (2) и контурные (3). Выбор схемы расположения шпуров в основном сводится к размещению врубовых и контурных шпуров.

Рис. 1.12 - Расположение шпуров в забое

Тип вруба выбирают в зависимости от физико-механических свойств грунта, площади поперечного сечения выработки, а также средств бурения.

Назначение врубовых шпуров - образование дополнительной плоскости обнажения путем их первоочередного взрывания зарядами повышенной мощности. Это создает более благоприятные условия для работы остальных шпуров.

В практике широко применяют клиновые и прямые врубы. Клиновые врубы применяют в грунтах любой крепости, но чаще всего в крепких грунтах. Рекомендуется применять их в выработках шириной до 4 м при глубине шпура до 2,5 м. Из клиновых врубов наиболее распространены вертикальный и горизонтальный (рис. 1.13). Достоинство этих врубов - возможность использования структуры грунтового массива: напластований, трещиноватости и т. д. Кроме этого, в связи с наклонным расположением зарядов облегчается отрыв грунта при взрыве. Недостатки врубов с наклонными шпурами: ограниченная глуби на шпуров, большой разброс грунта по выработке, трудность бурения наклонных шпуров.

Рис. 1.13 - Клиновые врубы с наклонными шпурами: а - вертикальный; б - горизонтальный

Применяют при бурении шпуров тяжелыми бурильными машинами, смонтированными на самоходных бурильных установках и буровых агрегатах. Различают следующие основные типы прямых врубов: щелевой (рис. 1.14, а), с центральной скважиной (рис. 1.14, б), призматический ярусный (рис. 1.14, в), призматический спиральный (рис. 1.14, г), прямой (рис. 1.14, д).

Рис. 1.14 - Прямые врубы

Достоинства этих врубов - простота обуривания забоя, умеренное сейсмическое воздействие на массив, не зависящая от ширины выработки величина заходки, возможность полной механизации работ.

Прямые врубовые шпуры получили преимущественное распространение. Число врубовых шпуров и взрываемую ими площадь сечения забоя определяют по схеме принятого вруба. Обычно число врубовых шпуров составляет от 4 до 8.

Отбойные (вспомогательные) шпуры, располагаемые между врубовыми и контурными (периферийными) шпурами, предназначены для разрушения основной массы грунта в забое. Располагают их под прямым углом к забою, реже с наклоном 75-80° к центру забоя и взрывают после врубовых, т. е. работают они при двух обнаженных поверхностях. Располагают отбойные шпуры в один, два или три ряда в зависимости от площади забоя таким образом, чтобы на каждый шпур приходился примерно одинаковый объем взрываемого грунта.

Контурные шпуры предназначены для разрушения грунта по контуру выработки и поэтому их располагают равномерно по периметру выработки на расстоянии примерно 15 см от проектного контура. Концы шпуров в слабых и средней крепости грунтах располагают на проектном контуре выработки; в грунтах, склонных к обрушению, концы шпуров не доводят до проектного контура, а в очень крепких породах они должны заходить за проектный контур выработки на 5-10 см.

При отсутствии отбойных шпуров в выработках малого поперечного сечения контурные шпуры разрушают основную массу грунта в забое.

В результате взрыва шпур разрушается, но не на всю длину. Отношение разрушившейся части шпура l p к его полной длине l ш называют коэффициентом использования шпура (КИШ):

Коэффициент η в горизонтальных выработках равен 0,8-0,9. Проекцию отбойных и контурных шпуров на продольную ось выработки называют глубиной комплекта шпуров l к. Глубина заходки l з = l к η. Ориентировочные значения допускаемой глубины заходки по условию устойчивости обнаженной выработки приведены в таблице 1.1.

Таблица 1.1

Длина врубовых шпуров примерно на 10% должна превышать длину отбойных для того, чтобы получающаяся врубовая воронка была достаточно большой для увеличения КИШ.

Бурение шпуров . Наиболее трудоемким процессом является бурение шпуров, которое занимает от 40 до 75% времени проходческого цикла. Для бурения шпуров и скважин применяются механические машины вращательного, ударно-поворотного и вращательно-ударного действия. Выбор типа бурильных машин определяется в первую очередь механическими характеристиками грунта.

Вращательное бурение с помощью электросверл обеспечивает высокие скорости бурения в мягких и средней крепости неабразивных грунтах (f = 1÷7). Электросверла подразделяются по массе на ручные массой до 20 кг (для бурения в мягких грунтах с f = 1÷2), ручные массой 20-24 кг с принудительной подачей (для бурения в грунтах мягких и средней крепости с f = 1÷4) и колонковые массой 110 кг с механизмом подачи (для бурения с колонки или манипулятора в крепких грунтах с f = 4÷7). В практике подземного строительства применяют электросверла марок ЭР-14Д-2М, ЭР-18Д-2М, СЭР-19М и СРП-2. Бурение машинами вращательного действия, основанными на принципе резания, по сравнению с ударными значительно уменьшает пылеобразование и повышает скорость бурения. При этом резко сокращается расход энергии и ее стоимость за счет применения относительно дешевой электрической энергии (вместо пневматической). Однако такие машины имеют ограниченный диапазон применения (малоабразивные грунты сравнительно небольшой крепости).

В тоннелестроении получило наибольшее распространение ударно-поворотное бурение , осуществляемое пневматическими бурильными молотками (перфораторами), которые используются для бурения шпуров и неглубоких скважин малого диаметра в грунтах различной крепости (f = 2÷20).

Пневматические бурильные молотки подразделяются на ручные , предназначенные для бурения горизонтальных и наклонных шпуров; телескопные для бурения шпуров и скважин в направлении снизу вверх; колонковые для бурения горизонтальных и наклонных шпуров и скважин.

Ручные перфораторы при бурении устанавливаются на пневматические поддержки (рис. 1.15). Поступательное движение вперед обеспечивается усилием рабочего или давлением сжатого воздуха.

Рис. 1.15 - Бурильный молоток на пневматической поддержке (пневмоколонке): 1 - канал поступления сжатого воздуха; 2 - корпус молотка; 3 - буровая штанга; 4 - пневматическая поддержка

Телескопные перфораторы соединены в одно целое с цилиндрической пневматической раздвижной стойкой, которая обеспечивает подачу бура вперед.

Осевая подача наиболее тяжелых колонковых перфораторов (3) (рис. 1.16) производится на специальных салазках (автоподатчиках) (1), закрепляемых на распорных колонках (2). Автоподатчики могут устанавливаться также на манипуляторах погрузочных машин и буровых кареток.

Рис. 1.16 - Автоподатчик с распорной колонкой

Производительность бурильных молотков зависит от их массы и давления сжатого воздуха и возрастает с их увеличением. Бурильные молотки, применяемые в тоннелестроении, снабжены устройствами для промывки шпуров водой, что уменьшает пылеобразование, повышает скорость бурения на 15-20% и увеличивает срок службы бурового инструмента.

Когда подача воды при бурении по различным причинам невозможна (бурение в мерзлых грунтах, в породах, склонных к пучению, и т. д.),применяется отсос пыли. В этом случае буровая пыль вместе с воздухом засасывается в канал бура и через осевую трубку диаметром 10 мм подается в пылеуловитель, который периодически очищается.

Непосредственным инструментом, с помощью которого производится разрушение грунта, является бур . Буры могут быть сплошные с несъемной коронкой (1) (рис. 1.17) и составные, состоящие из штанги (6), .съемных армированных коронок (7) и хвостовика (5). Для ручных и телескопных молотков применяют штанги шестигранного сечения, а для колонковых - круглого. Съемные коронки армируются пластинками твердых сплавов (ВК-6В, ВК-8В, ВК-ПВ, ВК-15) и по форме различаются на долотчатые (2), крестовые (3) и звездчатые (4). Армировка коронок значительно повышает их стойкость (по сравнению с неармированными) и позволяет увеличить среднюю скорость бурения примерно в 1,5 раза. Долотчатые коронки применяют для бурения грунтов различной крепости, крестовые и звездчатые - для бурения трещиноватых грунтов. Наружный размер (диаметр) буровых коронок может составлять 28, 32, 36, 40, 43, 52, 60, 75 и 85 мм.

Рис. 1.17 - Конструкция бура с буровыми коронками

Механизированное бурение шпуров осуществляется различными буровыми установками (каретками), буровыми рамами и агрегатами, а также с помощью навесного оборудования, смонтированного на погрузочных машинах.

Буровые установки (платформы на колесном или гусеничном ходу) снабжены манипуляторами, на которых закрепляются несколько (до 6) бурильных молотков с автоподатчиками.

Буровые установки позволяют увеличить скорость проходки на 20-25% и производительность труда на 20-23% при снижении трудоемкости работ в 2-3 раза.

Наиболее широкое распространение при строительстве автодорожных и железнодорожных тоннелей в устойчивых грунтах получили буровые подмости и буровые рамы, представляющие собой передвижные металлические конструкции портального типа (2) (рис. 1.18), позволяющие пропускать под собой транспорт. В передней части подмостей и рам размещается ряд вертикальных колонок с передвижными кронштейнами (3), на которых кренятся автоподатчики с перфораторами (1) ручного, телескопного (буровые подмости) и колонкового (буровые рамы) типов.

Рис. 1.18 - Буровая рама

В выработках большого сечения при безрельсовом транспорте грунта буровые рамы или подмости размещаются на автомашине и обуривают последовательно обе половины забоя. Кроме бурения шпуров, с буровых рам и подмостей производится также установка временной крепи (анкеров, арок и т. д.).

Параметры шпуров . На основании практических данных в зависимости от принятого бурового оборудования и крепости грунтов диаметры шпуров в тоннельных выработках назначают 34-38 мм при использовании ручных перфораторов, 42-46 мм при применении тяжелых колонковых перфораторов и бурильных машин вращательно-ударного действия.

Общее количество шпуров определяется из выражения

где Р к - периметр выработки по линии расположения контурных шпуров, м; а к - расстояние между контурными шпурами, м, которое в зависимости от крепости грунтов и степени их трещиноватости принимается по данным таблицы 1.3; Р п - ширина выработки по подошве, м; а п - расстояние между подошвенными шпурами, м; d - диаметр патрона ВВ, см; К з - коэффициент заполнения шпура (при f = l÷l,5 K з = 0,3÷0,5; при f = 2÷3 K з = 0,5÷0,6; при f = 4÷6 К з = 0,55÷0,65; при f = 7÷9 K з = 0,65÷0,70; при f = 10÷14 К з = 0,70÷0,75; при f = 15÷20 К з = 0,754÷0,80); Δ - плотность патронирования или заряжания ВВ, г/см (в зависимости от вида ВВ Δ = 1,0÷1,45); К Δ - коэффициент уплотнения заряда порошкообразных и пластичных ВВ в процессе заряжания (К Δ = 1,05÷1,15); Sʹ = S-S конт - площадь ядра сечения тоннеля (площадь сечения тоннеля S за вычетом площади выработки S конт, взрываемой контурными зарядами), м 2 .

Таблица 1.3

В свою очередь

где N k = P k /a k - число контурных шпуров; W k = a k /m - линия наименьшего сопротивления (ЛНС) контурных зарядов (кратчайшее расстояние между контурными зарядами), здесь m - коэффициент сближения зарядов, принимаемый для крепких грунтов равным 1,1-1,3; для трещиноватых - 0,8-0,9.

Глубина шпуров является одним из решающих факторов, определяющим трудоемкость и скорость проведения выработки. При выборе глубины шпуров учитывают поперечные размеры выработки, свойства пересекаемых грунтов, тип бурового оборудования и схему организации работ.

Практика показала, что при бурении шпуров ручными перфораторами глубину их следует принимать 2-2,5 м. При бурении шпуров бурильными установками глубина шпуров ограничивается техническим паспортом установки и принимается от 2,7 до 4 м, а в тоннелях большого поперечного сечения - 5-6 м.

Взрывчатые вещества . Выбирая ВВ, следует руководствоваться условиями их размещения, крепостью взрываемых грунтов, стоимостью ВВ, а также безопасностью при обращении с ними. По степени опасности при хранении и перевозке все ВВ разделены на пять групп.

При строительстве тоннелей для ведения буровзрывных работ используют ВВ второй группы - для открытых и подземных работ, неопасных по газу и пыли. Наиболее широко используют смеси аммиачной селитры с тротилом в порошкообразном (аммониты) или гранулированном (гранулиты, граммониты) виде. Гранулированные ВВ обладают повышенной водоустойчивостью, что позволяет их применять в обводненных выработках.

Классификация наиболее распространенных ВВ, применяемых в тоннелестроении, приведена в таблице 1.4.

Таблица 1.4

Общий расход ВВ на цикл, кг/м 3 , для разрушения грунта в выработке с площадью поперечного сечения S на глубину заходки l з определяется по формуле:

где q c - Средний расход ВВ, кг/м 3 .

Средний удельный расход ВВ является определяющим параметром эффективности взрывных работ и изменяется в широких пределах в зависимости от трещиноватости и прочности грунтов, сечения выработки, работоспособности ВВ, плотности заряжания и т. п.

Для выработок сечением более 20 м 2 с одной плоскостью обнажения забоя и коэффициентом крепости грунта f = 16÷18 средний удельный расход ВВ:

где е - коэффициент работоспособности ВВ (в зависимости от вида ВВ е = 0,65÷1,1); φ - коэффициент влияния плотности заряжения, изменяющийся в пределах от 1 (при пневмозаряжании) до 1,1 (при заряжании патронирован ными ВВ); ω - коэффициент структуры грунта (рекомендуется принимать для грунтов вязких, упругих и пористых ω = 2,0; дислоцированных с неправильным залеганием и мелкой трещиноватостью ω = 1,4; с напластованием, перпендикулярным направлению шура, ω = 1,3; массивных и плотных ω = 1; мелкослоистых сильнотрещиноватых ω = 0,6÷0,8).

При взрывании грунта в забоях с двумя плоскостями обнажения величину среднего удельного заряда, определенную по приведенной формуле, умножают на коэффициент, принимаемый в пределах 0,60-0,75. Полученный теоретически удельный расход ВВ уточняется в процессе проведения опытных взрывов.

Средства и способы взрывания . Взрывание зарядов может быть электрическое, огневое, электроогневое и бескапсюльное - детонирующим шнуром.

Средства взрывания (СВ) обеспечивают детонацию (возбуждение взрыва) зарядов промышленных ВВ. Из средств взрывания используются капсюли-детонаторы (КД), огнепроводные шнуры (ОШ), электродетонаторы (ЭД) мгновенного действия типа ЭД-8-Э (водостойкий, непредохранительный) и ЭД-8ПМ (предохранительный, водостойкий, повышенной мощности); короткозамедленного действия типа ЭДКЗ-ПМ-15 со ступенями замедления 15, 30, 45, 60, 75, 90, 105, 120 мс; ЭДКЗ-ПМ-25 с замедлением 25, 50, 75, 100 и 125 мс; электродетонаторы замедленного действия ЭДЗД со ступенями замедления 0,5; 0,75; 1,2; 4,6; 8 и 10 с.

Огнепроводные шнуры служат для возбуждения взрыва инициирующего ВВ в капсюле-детонаторе.

Детонирующий шнур (ДШ) предназначен для передачи и возбуждения детонации. ВВ, КД, ЭД и ДШ относятся к первичным способам взрывания, а ОШ - к вспомогательным средствам взрывания.

Заряд состоит из нескольких патронов ВВ, один из которых является патроном-боевиком, содержащим электродетонатор или капсюль-детонатор с огнепроводным шнуром (зажигательная трубка). Для передачи детонации от капсюля-детонатора или электродетонатора к заряду ВВ иногда применяют детонирующие шнуры ДША и ДШБ. От взрывной волны, вызванной детонацией патрона-боевика, взрывается весь заряд. При огневом взрывании огнепроводные шнуры зажигаются в установленной очередности одним взрывником, при этом за один прием разрешается зажигать не более 16 шнуров. Когда необходимо взорвать большое количество зарядов, переходят к одновременному групповому зажиганию 6-30 шт. огнепроводных шнуров с помощью зажигательных патронов типа ЗП-Б. Зажигательные патроны ЗП-Б предназначены для группового зажигания огнепроводных шнуров, количество которых назначается от 7 до-37.

При электрическом взрывании в забое производится монтаж электровзрывной цепи, состоящей из электродетонаторов и проводов. В качестве источника тока используются взрывные машинки типов КПМ-ТА, КПМ-1А, силовая или осветительная электрические сети. Соединение электровзрывной цепи может быть последовательным, параллельным или смешанным. Перед взрывом смонтированная электровзрывная цепь обязательно должна проверяться на сопротивление (оно должно быть равно расчетному с отклонением ±10%) и на токопроводимость.

Контурное (гладкое) взрывание получило широкое распространение. Особенность этого способа взрывания состоит в конструкции контурных зарядов, их взаимном расположении (расстояние между ними составляет 0,30-0,60 м), применении ВВ небольшой мощности и короткозамедленном взрывании.

Конструкция контурного заряда следующая (рис. 1.19): в донной части шпура размещают патрон-боевик (1), затем устанавливают деревянную прокладку (2), ставят следующий патрон ВВ (3) и т. д. Длина деревянных прокладок обычно составляет в крепких грунтах 3-5 см, в слаботрещиноватых - 20-30 см. Устье шпура уплотняется забоечным материалом (забойкой) (4). Взрывание производят от электрической сети или детонирующим шнуром (5).

Рис. 1.19 - Конструкция контурного заряда

Забойку применяют для повышения эффекта взрыва и предотвращения выброса ВВ из шпуров. Обычно забойку изготавливают из смеси песка и глины (3:1) в виде пыжей диаметром на 5-6 мм меньшим диаметра шпура. Послед нее время используют и водяную забойку (гидрозабойку) из пластиковых ампул, заполненных водой.

Расстояние между осью контурного шпура и очертанием выработки должно быть не более 10 см.

Контурное взрывание позволяет значительно снизить размеры переборов (до 5 см), в связи с чем уменьшается перерасход бетона в 1,5-2,0 раза и сокращаются расходы на погрузку и транспортировку грунта на 5-7%. Все это обеспечивает общее снижение стоимости сооружения тоннеля на 20-40% по сравнению с обычными способами взрывания. Кроме этого, контурное взрывание снижает сейсмическое действие взрыва на грунтовый массив.

Техника безопасности при взрывных работах . Последовательность проведения взрывных работ определена правилами безопасности, которые устанавливают безопасные расстояния для людей, машин, сооружений и подземных складов ВВ для предохранения их от повреждений при взрыве.

Взрывание в непосредственной близости от свежеуложенного бетона должно производиться не ранее 7 суток после его укладки.

В подземных выработках перед заряжанием шпуров выставляются посты охраны в местах подступов к забою.

Производство взрывных работ должно сопровождаться звуковыми, а в темное время суток - звуковыми и световыми сигналами. По первому звуковому сигналу (один продолжительный) рабочие уходят из рабочей зоны в укрытие, а взрывники осматривают, заряжают забой и монтируют электросеть. По второму сигналу (два продолжительных) взрывник зажигает шнуры (при огневом способе) или включает ток. Вход взрывника в забой для осмотра допускается после проветривания, но не ранее 15 мин после взрыва. По третьему сигналу (три коротких - отбой) рабочие допускаются к работе в забое.

Отказавшие заряды должны быть ликвидированы мастером-взрывником немедленно путем подрывания дополнительных зарядов, располагаемых в параллельно пробуренных шпурах на расстоянии не ближе 30 см от отказавшего шпура.

После взрывания и проветривания забой приводят в безопасное состояние путем обстукивания кровли и боков тоннеля и оборки отслаивающихся кусков грунта. Оборка производится металлическими штангами или отбойными молотками с рабочих подмостей или площадок гидроподъемников типов МШТС-2Т, МШТС-2ТП и др., перемещающихся на гусеничном ходу.

Строительство тоннеля с применением комбайнов

В последнее время в практике тоннелестроения все большее применение находит способ строительства подземных выработок с помощью комбайнов. Комбайновый способ обладает по сравнению с буровзрывным следующими достоинствами: обеспечивается непрерывная механизированная работа в забое при совмещении по времени основных процессов разрушения и погрузки грунта; увеличивается производительность труда рабочих (на 20-40%) и обеспечиваются высокие скорости проходки; достигается ровный контур выработки, максимально приближающийся к проектному, что практически ликвидирует переборы грунта и обеспечивает экономию бетона; устраняется вредное воздействие взрывов на окружающий выработку грунтовый массив. Недостатки комбайнового способа заключаются в высокой стоимости комбайнов с комплектом резцов и в большом расходе электроэнергии. Комбайновый способ экономически целесообразно применять только при длине тоннеля более 1,6 км и диаметре до 11 м.

По конструктивным особенностям проходческие комбайны подразделяются на комбайны бурового (роторного) и избирательного действия. Особенностью комбайнов роторного действия является разрушение грунта одновременно по всей площади забоя. К комбайнам такого типа относятся «Роббинс» (США), «Вирт» (ФРГ), «Демаг» (ФРГ) и другие, режущий орган которых представляет собой мощную круговую платформу, вращающуюся с частотой до 14,5 об/мин, на которой размещены резцы различной конструкции.

К проходческим комбайнам избирательного действия относятся машины с перемещением и вождением по забою режущего органа, который размещен на конце подвижной рукоятки. Комбайны избирательного действия используются при строительстве тоннелей только в грунтах средней крепости (f ≤ 8), что ограничивает область их применения и является основным недостатком таких комплексов. В то же время комбайны избирательного действия достаточно маневренны и позволяют разрабатывать выработки любой формы. Наибольшее распространение получили комбайны избирательного действия со стреловидным исполнительным органом (рис. 1.20).

Рис. 1.20 - Общий вид комбайна избирательного действия со стреловидным исполнительным органом

Рабочее оборудование комбайна состоит из рукоятки (3) (рис. 1.21), перемещающей по забою исполнительный орган с фрезой (1) с помощью двух симметрично расположенных домкратов (4) и вращающейся платформы (5), а также напорного домкрата (2), позволяющего развивать значительные усилия на забой при внедрении режущего органа в скальный грунт. Платформа (5) расположена на ходовой части (6) машины, на которой также находится кабина машиниста с пультом управления (9). Передвижение таких комбайнов осуществляется чаще всего на гусеничном ходу. Уборка грунта производится в большинстве случаев с помощью загребающего устройства (8) с транспортером (7), который позволяет грузить грунт не только в большегрузные вагонетки, но и в самосвалы.

Рис. 1.21 - Схема комбайна со стреловидным исполнительным органом

В зависимости от своих технических возможностей такие комбайны производят разработку грунта либо сразу по всей площади забоя, либо сначала разрабатывается грунт в верхней части забоя на максимально допустимую высоту для данного типа комбайна, а затем производится доработка нижней части выработки. Так, с помощью комбайна 4ПП-2 можно разрабатывать грунт в забое высотой до 4,5 м, комбайном 4ПП-5 - высотой до 5 м, а комбайна ГПК-2 - до 5,5 м. В случае необходимости строительства тоннелей высотой более 5 м нужно использовать комбайновые комплексы ТК-2 и TK-lc.

Комплекс ТК-2 (рис. 1.22) позволяет сооружать тоннели шириной и высотой от 5 до 8 м с производительностью от 30 до 80 м 3 /ч. Комплексом ТК-lc можно проходить тоннели сечением от 18,0 до 37 м 2 с производительностью до 70 м 3 /ч в породах с f ≤ 6.

Разработка грунта при проходке тоннелей механизированным способом является перспективным направлением.

Рис. 1.22 - Тоннельный комплекс ТК-2: 1 - комбайн типа 4ПП-2; 2 - передвижная платформа; 3 - верхний перегружатель; 4 - нижний перегружатель

Часто сравнивается с фундаментом строительной компании. От качества ее выполнения во многом зависит успех строительства, его темпы, а также прочность и надежность построенных зданий и сооружений.

Действительно, основой любого строения, принимающей на себя его вес, является фундамент, который в свою очередь, передает нагрузку на плоскость основания, роль которого играет несущий грунт.

Его подготовка, включающая расчет основания с учетом качества грунта, производится в самом начале строительных работ.


Перед началом работ в обязательном порядке проводится изучение грунтов, составляющих участок. На основании полученных данных определяется глубина разработки фундамента, объем предстоящих земляных работ, а также потребность в специальной технике.


Наиболее распространенными являются следующие виды грунтов:

  • сыпучий грунт, состоящий преимущественно из песка или гравия;
  • грунт с высокой связностью, состоящий из глины или суглинков;
  • скальные грунты;
  • грунты с низкой несущей способностью, состоящие из лессов, торфа и т.д.

В зависимости от объема земляных работ и места расположения строительной площадки (учитывается наличие подъездных путей и места для маневров техники), разработка грунта может вестись ручным или механизированным способом.

Разработка грунта механизированным способом, цена которой зависит от используемой техники и качества грунта, всегда эффективней и экономически выгодней по сравнению с ручным трудом.

В то же время ручная разработка грунта может быть единственным приемлемым способом проведения земляных работ.

Способы разработки грунта

Ручная разработка грунта

Земляные работы считаются одними из самых тяжелых видов работ, требующих специальной физической подготовки. Их проведение практикуется только в особых случаях.

Ручная разработка грунта ведется в тех случаях, когда использование землеройной техники невозможно из-за стесненных условий или малого объема работ, например, при подчистке котлованов и узких траншей, где бульдозер просто не может поместиться. При ручной разработке грунтов используются лопаты, заступы, тележки или вагонетки.

Применять ручной труд при разработке скальных грунтов допускается только в случаях аварийной ситуации.


Механизированная разработка грунта

Механизированная разработка грунта считается основным способом ведения земляных работ. При этом используется землеройная и землеройно-транспортная техника: экскаваторы и скреперы.

В свою очередь экскаваторы могут быть циклического действия, например, одноковшовые, производящие выемку и погрузку грунта, а также непрерывного действия, например, цепные или роторные, применяемые для разработки грунтов линейной выемки. Примером линейной выемки является рытье канав, глубина которых при использовании роторных экскаваторов может составлять 1,5 м, а при применении цепных экскаваторов составлять 3,5 м.

При разработке грунтов экскаваторами необходимо задействовать транспортные средства для его перемещения за пределы строительной площадки. Практикуется также разработка грунта с погрузкой бульдозерами в отвал.

В то же время скрепер выполняет одновременно две функции: транспортного средства по перемещению грунта и землеройной машины. Его рабочий орган ковш оборудован специальным ножом, обеспечивающим послойное резание грунта, сопровождающееся одновременной его погрузкой.При заполнении ковша он поднимается, переходя в транспортное положение, а затем отвозит грунт к месту его складирования. В зависимости от объема земляных работ можно использовать скреперы с различным объемом ковша от 1,5тонн до 25 тонн.



Особенности разработки грунта зимой

При необходимости земляные работы могут вестись и в зимнее время года. При этом следует учитывать, что трудоемкость работ, а также их стоимость зимой увеличивается. Так, к примеру, стоимость разработки мерзлого грунта экскаватором может увеличиться в 2 раза.

Выбор техники для разработки грунтов зимой производится в зависимости от глубины промерзания. При незначительном промерзании, составляющем 10% от объема 1м3 грунта, для работы используются скреперы или бульдозеры. Если объем замерзшего грунта в одном кубическом метре составляет 0,15%, используют экскаваторы-драглайны, а при промерзании 25% применяют экскаваторы с прямой лопатой.

При более сильном промерзании грунты перед разработкой рыхлят или скалывают специальной техникой.


Для повышения эффективности работ предпринимаются меры по защите грунтов от промерзания. Для этого их предварительно рыхлят, утепляют местными доступными теплоизоляционными материалами, например, сухой травой, листвой или хвоей. Хороший эффект по защите грунта от промерзания можно получить при использовании снегозадержания.

Особенности разработки грунта в труднодоступных местах

Выемка грунта в труднодоступных местах, там, где использование обычной землеройной техники не представляется возможным, производится вручную или с помощью специального экскаватора с телескопическим оборудованием, получившим название «планировщик». Его конструкция предусматривает выдвижение и обратное втягивание стрелы, и несколько дополнительных степеней подвижности ковша, что позволяет использовать «планировщик» для работы в стесненных условиях, под мостами и на склонах.


Особенности разработки грунта на зыбких и пучинистых почвах

Земляные работы с обычными грунтами лучше вести в теплое время года. При отрицательной температуре грунт замерзает и его прочность возрастает с несколько раз, что требует затраты больших усилий для его разработки и выемки.

Однако в некоторых случаях, например, при работе в заболоченной местности или при отсутствии подъездных путей, земляные работы ведутся зимой. Расчет делается именно на замерзание грунта и повышение его прочности, что позволяет создать подъездные пути и организовать работу техники.