Фрезерный станок с чпу точность. Исследование точности станков с чпу. Основы теории высокоточной обработки металла

Обработка металла с высокой (прецизионной) точностью требует особого подхода для изготовления станочного оборудования. Все прецизионные станки делятся на классы по степени предельной точности, с которой они способны обрабатывать детали:

  • Станки класса А (особо высокая точность).
  • Класс B (оборудование высокой точности).
  • Класс C (станки особой точности).
  • Станки класс П (повышенная точность обработки).

Прецизионное оборудование обеспечивает обработку деталей идеальной геометрической формы, особо точным пространственным расположением осей вращения. Станки позволяют получить шероховатость поверхности до одиннадцатого класса чистоты. Параметры изготовления, при определенных условиях, достигают значений характерных для первого класса чистоты.

Для достижения таких показателей необходимо применение станочных узлов и агрегатов, изготовленных по соответствующим стандартам, имеющих минимальные погрешности при их производстве . Особое значение придается используемым подшипникам. На прецизионных станках по металлу используются гидродинамические и аэростатические подшипники высокого класса изготовления.

При работе металлообрабатывающего оборудования происходит большое выделение тепла, воздействующее как на узлы станка, так и на заготовки. При этом и те, и другие испытывают механические деформации, приводящие к снижению точности изготовления. В высокоточных станках реализована функция активного отвода тепла, препятствующая геометрическим отклонениям элементов станка и деталей. Понижение уровня нежелательных вибраций также способствует точности изготовления.

Основы теории высокоточной обработки металла

Современный металлорежущий станок можно рассматривать как некую систему из трех составляющих: измерительной, вычислительной, исполнительной. Ни одна из них несовершенна, каждая вносит погрешности в точность изготовления.

Точность измерительной части зависит от показаний применяемых датчиков. Точность измерения повышается с применением более совершенных датчиков - измерительных устройств. Сегодня подобные устройства способны отслеживать размеры до нескольких нанометров.

Исполнительная точность непосредственно зависит от узлов и агрегатов станка. Чем выше будут параметры составляющих оборудования, тем меньшая сложится окончательная погрешность.

К погрешностям металлообрабатывающих станков относятся:

  • Геометрические , зависящие от качества изготовления комплектующих станка и их сборки. От этого зависит точность расположения относительно друг друга рабочего инструмента и заготовки в процессе обработки.
  • Кинематические погрешности зависят от соответствия передаточных чисел в механизмах станка. Кинематические цепи особое влияние оказывают на точность изготовления зубчатых элементов, резьбы.
  • Упругие погрешности определяются деформациями станка. В процессе резания происходит отклонение, под действием возникающих сил, взаимного расположения инструмента и заготовки. В прецизионных станках, для борьбы с такими проявлениями, создают особо жесткие конструкции.
  • Температурные . Неравномерный нагрев узлов станка приводит к потере начальной геометрической точности, снижая качество изготовления.
  • Динамические погрешности объясняются относительными колебаниями рабочего инструмента и заготовки.
  • Погрешности изготовления и установки режущего инструмента.

Двигатели, редукторы содержат подвижные части, имеющие люфты, поверхности скольжения со временем претерпевают износ - все это непосредственно влияет на качество обработки. Такое понятие,

как точность позиционирования системы «станок - деталь», напрямую зависит от исполнительной точности.

Некоторые способны обрабатывать детали с точностью до 0,0002 мм, при частоте вращения шпинделя 15000 об/мин. Такие показатели имеют и оборотную сторону. Стоимость оборудования значительно выше по сравнению с обычными станками. Это является следствием применения новейших наукоемких технологий при изготовлении станков. В качестве примера можно указать использование аэростатических направляющих, где суппорт с рабочим инструментом скользит на расстоянии в несколько микрон от поверхности. То есть фактически находится в «воздухе».

Современный прецизионный шлифовальный станок - это автоматизированный комплекс, позволяющий обрабатывать детали с точностью до 0,01 мм . Служит для заточки инструментов из алмазов, твердых сплавов, инструментальной стали. Ультрапрецизионные шлифовальные станки способны обрабатывать внутренние и внешние поверхности детали за одну установку. Прецизионный сверлильный станок обладает жесткой конструкцией, оборудован цифровой индикацией, отображающей параметры сверления.

Общим для всех типов прецизионных станков является использование в приводах фрикционных передач. При этом повышается качество изготовления, упрощаются кинематические цепи. Более высокий КПД снижает себестоимость работ.

Выходные параметры станка по показателю точности

При оценке качества итехнического уровня станка в первую очередь необходимо уста­новить те выходные параметры, которые ха­рактеризуют его точность. При этом точность обработанных на станке деталей не может быть выбрана в качестве такого параметра, так как она является результатом влияния всех компонентов технологической системы (инстру­мента, заготовки и др.). Поэтому при проек­тировании станка надо установить и регла­ментировать те параметры, которые определяют точность обработки и являются входными для технологической системы (см. рис. 2.1).

Качество станка зависит от того, с какой степенью точности выполняются заложенные в технологическом процессе обработки взаимные перемещения инструмента и заготовки при воздействии на станок всего комплекса силовых и тепловых факторов. Поэтому основными вы­ходными параметрами станка как элемента технологической системы являются характе­ристики точности движения его формообразую­щих узлов.

Получать эти характеристики можно одним из следующих способов.

1.Оценивать те параметры траекторий формообразующих узлов станка, которые влия­ют на точность обработки. При этом траектории относятся к установочным базам станка, опре­деляющим положение приспособления, заготов­ки или инструмента.

2.Оценивать суммарное влияние парамет­ров траекторий рабочих органов станка на формирование так называемого «геометрическо­го образа» обработанной детали, когда опре­делены ее погрешности без учета влияния на точность других компонентов технологической системы.

Основная цель регламентации выходных па­раметров станка - создание такого технологи­ческого оборудования, погрешность работы ко­торого находилась бы в течение всего периода эксплуатации в пределах, установленных техно­логом.

Траектории формообразующих узлов, пара­метры которых устанавливают в качестве вы­ходных, относятся к специально выбранным опорным точкам, которые располагают на уста­новочных базах станка, определяющих поло­жение заготовки, приспособления или инстру­мента. Число опорных точек и их расположение связано с методом обработки, конструктивной схемой станка, характером движения его фор­мообразующих органов и методом крепления заготовки и инструмента.

Поскольку положение твердого тела в прост­ранстве определяют три фиксированные точки или параметры пространственного вектора, от­несенного к одной точке, то в общем виде необходимо установить шесть координат (нап­ример, три линейных и три угловых откло­нения вектора данной точки от заданного по­ложения). Однако при рассмотрении различных конструкций формообразующих узлов станка число этих характеристик может быть умень­шено, если отдельные отклонения не оказыва­ют существенного влияния (слагаемые второго порядка малости) на точность обработки.

Рис. 2.3. Опорные точки формообразующих узлов станка:
а - суппорт; б - стол; в - шпиндель

На рис. 2.3 показаны типичные случаи вы­бора опорных точек. Для характеристики точ­ностных параметров суппорта токарного станка достаточно одной опорной точки 1, совпадаю­щей с вершиной резца (рис. 2.3, а), поскольку целью при создании конструкции суппорта явля­ется стремление к обеспечению прямолиней­ной траектории для инструмента, которая не изменяет своей формы и положения при силовых воздействиях и различных положениях инструмента в рабочем пространстве. Траектория данной опорной точки будет служить характеристикой возможностей суппорта по об­работке заданной номенклатуры деталей с обес­печением точности размера, формы обработан­ной поверхности, волнистости, шероховатости и других показателей точности.

При движении стола с закрепленной на нем заготовкой (рис. 2.3, б) у фрезерных , расточ­ных, шлифовальных и других станков необ­ходимо оценить точность перемещения стола в пространстве. Положение заготовки или приспо­собления для ее закрепления определяется положением в пространстве плоскости стола. Поэтому в общем случае должны быть уста­новлены либо три опорные точки 1 , 2, 3, траекто­рии движения которых рассматривают, либо рассматривают вектор для одной из точек стола с характеристиками его положения в простран­стве в каждой точке траектории (три линей­ных и три угловых отклонения от заданного положения при пространственном перемещении стола).

Для шпиндельного узла (рис. 2.3, в) точность его вращения и изменение положения оси шпинделя связаны с геометрической погреш­ностью элементов узла, с силовыми и тепловы­ми деформациями. Все это влияет на положение инструмента или заготовки, установленной в шпинделе с помощью приспособления (патро­на, центра).

Когда положение патрона определяет плос­кость переднего торца шпинделя, три фик­сированные точки располагают на этой плос­кости или, что более целесообразно, опреде­ляют для точки, находящейся в центре шпин­деля, положение в пространстве вектора R , перпендикулярного к плоскости установочной базы. Характеристики траекторий опорных то­чек формообразующих узлов определяют качество станка с позиций возможного достиже­ния точности обработки и его вклада в суммар­ную погрешность обработки .

Рис. 2.4. Типичные ансамбли траекторий при посту­пательном движении рабочего органа станка

При осуществлении на станке различных технологических процессов (в соответствии с его назначением и степенью универсальности) траектории опорных точек проявляются как случайные функции и образуют совокупности (ансамбли) траекторий. Такие совокупности могут иметь различный вид, характеризующий статистическую природу явлений (например, с сильным или слабым перемешиванием реализа­ций или с другими особенностями). На рис. 2.4 показаны типичные совокупности траекторий при поступательном движении рабочих орга­нов станка (суппортов, столов, ползунов и др.).

Широкополосные ансамбли траекторий (рис.2.4, а) характерны для случая, когда основное влияние на форму траектории и ее смещение по отношению к средней линии или к непод­вижной оси координат оказывают внешние силовые воздействия. Узкополосные ансамбли траекторий (рис. 2.4, б) характерны при пре­валирующем влиянии геометрической погреш­ности направляющих, что и определяет форму кривой математического ожидания траекто­рий М X . Дисперсия, связанная с силовыми воздействиями на узел, здесь играет второсте­пенную роль. Миграция совокупностей траекто­рий (рис. 2.4, в) вызвана, как правило, теп­ловыми деформациями узла.

Каждая реализация любой совокупности свя­зана с параметрами точности той конкретной детали, которую при этом обрабатывали, а характеристики всего ансамбля влияют на точ­ностные характеристики партии обработанных на станке деталей. Поэтому для каждой кон­кретной модели станка в зависимости от его назначения необходимо установить и регла­ментировать те параметры траекторий, которые определяют те или иные виды погрешностей, возникающие на обработанных поверхностях.

Как известно , погрешность обработки подразделяют на пять основных видов: погреш­ность размеров, отклонения расположения поверхностей, отклонения формы, отклонение параметров волнистости и шероховатости по­верхности.

При назначении номенклатуры параметров траекторий рабочих органов станка учитывает­ся их взаимосвязь с погрешностью обработ­ки, которая зависит от метода обработки и кинематики процесса формообразования.

На рис. 2.5 показаны типичные траектории при поступательном движении формообразую­щего узла станка. Их параметры (Х 1 , Х 2 , ..., Х п), определяющие соответствующую погреш­ность обработки, приведены в табл. 2.2. Эти параметры связаны с размером и формой обработанной поверхности, точностью взаимного положения поверхностей, волнистостью и шероховатостью поверхности.

2.2. Выходные параметры станка по показателю точности

Для вращательного движения характерна передача погрешностей траектории опорной точки шпинделя (ее формы и высокочастотных составляющих) на обработанную поверхность цилиндрической детали (рис. 2.6).

Для периодических кривых разложение траектории в ряд Фурье позволяет выделить те параметры, которые определяют форму, волнистость и шероховатость обработанных поверхностей при токарной, расточной, шлифовальной и других операциях.

Анализ траекторий целесообразно осуществлять, рассматривая отклонение текущего радиуса R от номинального R0 в полярной системе координат, и определять

где f (φ) - погрешность траектории в функции текущего угла φ.

Разложим данную функцию в ряд Фурье с ограниченным числом членов:

где Сk - амплитуда k-гармоники; φ -начальная фаза; n - порядковый номер высшей гармоники полинома. Согласно теории Фурье нулевой член Со разложения является средним значением функции f(φ) за период 2π:

поэтому Со определяет значение погрешности размера.

Рис. 2.5. Типичные виды реализаций траекторий при поступательном движении

Первый член разложения C1cos(φ+φ) выражает несовпадение центра вращения шпинделя в О" с геометрическим центром траекторий О, т. е. эксцентриситет е = ОО", что определяет погрешность в отклонении расположения обработанных цилиндрических поверхностей (рис. 2.6, б). Остальные члены ряда, начиная со второго, определяют характеристику формы, которую образуют траектории и которая непосредственно связана с формой обработанной детали (овальностью и огранкой).

Рис. 2.6. Форма поперечного сечения обработан­ной цилиндрической поверхности (а) и траектория движения опорной точки шпинделя (б):
1- форма поверхности; 2 - волнистость; 3 - шеро­ховатость; R д - номинальный радиус обработан­ной детали

При выборе номенклатуры выходных параметров данной модели станка и установлении их допустимых значений необходимо учитывать следующее.

1.Чем выше класс точности станка и требования к точности обработанных поверхностей, тем большее число назначают выходных параметров (характеристик траекторий формообразующих узлов) станка.

2.Допустимые значения выходных параметров станка составляют часть соответствующего допуска на изготовление детали, поскольку погрешность обработки зависит от всех компонентов технологической системы.

3.Расчет доли суммарной погрешности, приходящейся на станок и другие компоненты технологической системы, осуществляется методами, применяемыми в технологии машиностроения для расчета точности обработки

В первом приближении можно принимать допустимое значение для выходного параметра станка как долю от соответствующего допуска на точность изготовления детали, равную 6 = 0,4...0,8, учитывая степень влияния других компонентов технологической системы и давая запас на возможное изменение параметров станка в процессе эксплуатации.

Для прецизионных станков значение k принимается большим, так как в этом случае станок играет основную роль в обеспечении точности обработки.

Точность является основным показателем станка, однако для оценки его технического уровня и полной характеристики его качества необходимо применять показатели, определяющие весь диапазон требований, предъявляемых к станку потребителем.

Сорри, что задержался с ответом. Постараюсь возместить это полнотой описания.

1. Шведский easy laser (D525 и пр.)

Система преднозначена для различных измерений и выверки машин и механизмов от малых до больших. Различные типы измерений: от выверки валов и шкивов до геометрических измерений (плоскостность прямолинейность и пр.). Есть частичная компенсации влияния окружающей среды.

Представляет собой набор различных лазеров и приемников с кронштейнами для их закрепления.

Стоймость от 450 т.р.

2. Американский Excel Precision’s 1100B

Метрологическая система преднозначенная для поверки станков. решаемы задачи вполне стандартные: перпендикуляность, плоскостность, паралельность и пр. Есть частичная компенсация влияния внешней среды.

Стоймость неизвестна (ответа от производителя не получил)

Представляет собой 2 модуля: лазер и приемник.

Точность 0,0005-0,0002 мм/м в зависимости от задач

3. Шведский Fixturlaser Geometry System

Очень похожая по фунциональности и по параметрам с Easy Laser.

Представляет собой набор различных лазеров и приемников с кронштейнами для их закрепления. Есть частичная компенсации влияния окружающей среды.

Стоймость от 600 т.р.

Точность 0,01-0,02 мм/м в зависимости от задач

4. Итальянский OPTODYNE MCV-400 (и пр.)

Система для лазерной калибровки и поверки машин и механизмов. Представляе собой набор лазерных, зеркальных модулей и приемников. Есть компенсации влияния окружающей среды.

Стоймость от 800 т.р.

Точность 0,001-0,002 мм/м в зависимости от задач.

5. Эстонская LSP30

На самом деле является системой для лазерных геометрических измерений. т.е. интерфейс программы управления бедненький. Представляет собой модуль лазерный интерферометра и приспособления для измерения резличных геометрических параметров: плоскостности, паралельности и пр. Нет компенсации влияния окружающей среды.

Стоймость от 500 т.р.

Точность 0,00025-0,0025 мм/м в зависимости от задач.

6. Американская Hamar Laser L-743.

система очень похожая на Renishaw ML10 со всеми вытекающими отсюда последствиями. Рзличные модули для поврота и приема луча.

Есть компенсации влияния окружающей среды.

Стоймость от 1,5 млн. р.

Точность 0,0001-0,0008 мм/м в зависимости от задач.

7. Американская API XD Laser Measurement Systems

Одна из самых мощных по применению и по точности систем. Та же модульная систем, но с 3 лазерами и множеством детекторов и поворотных устройств. Есть компенсации влияния окружающей среды.

Точность 0,00005-0,0025 мм/м в зависимости от задач и исполнения системы.

Стоймость неизвестна.

8. Америкаская PINPINT"s PLS-100

Такой Американский "Лего" для поверки станка. Лезер и различные модули для поворота и приема луча. Нет компенсации влияния окружающей среды.

Точность 0,001-0,01 мм/м в зависимости от задач и исполнения системы.

Стоймость неизвестна.

Каждая система характеризуется максимальным расстоянием работы но даже в самых простых оно не менее 10м. (для моих задач вполне достаточно).

Представитльства есть в России у Easy Laser и по моему у API. Когда общался с эстонцами, то выяснилось что в тот момент самы знающий человек в Китае, но вроде должен был вернуться уже.

Вроде пока все.

P.S. У самого сейчас руководство наконец осознало необходимость в подобной системе и вроде как готово заказать что-то из вышеперичисленного но недорогого.

Доброго времени суток!

Насчет недорого! Стоимость как правило складывается из требований по компректации, минимум Лазерная голова + Оптика для линейных измерений + Софт и выдет около 700 тысяч руб. с ндс., комплект для работы в термоконстантном помещении, или с ручным вводом значений параметров окружающей среды и будет работать до 40 метров. Просто для нормальной эксплуатации нужен блок авто-компенсации, крепеж, тренога и прочее. Вот стоимость выходит на рубеж 1,3 лимона.

А полный комплект выдет на 4 с лишним ляма. Гарантированно могу сказать, что стоимость аналогичного набора не будет сильно отличатся от производителя.

Даже у нас действуют европейские цены, при ввозе из за рубежа другие могут сэкономить только на таможне, что черевато при возникновении гарантийного случая.

Тут проскочили высказывания по поводу плохой работы в Питерском представительстве, просто входящая информация не всегда коректна и часто неоходимо уточнять "что клиет хочет получить в итоге", для правильного предложения. Ну и неприятности, Питерский офис закрыли. :(

Работая в автоматическом или полуавтоматическом режиме станок с ЧПУ прежде всего должен обеспечить точность изготовляемых деталей, которая зависит от суммарной погрешности. Суммарная погрешность в свою очередь складывается из ряда факторов:

Точность станка;

Точность системы управления;

Погрешности установки заготовки;

Погрешности наладки инструментов на размер;

Погрешности наладки станка на размер;

Погрешности изготовления инструмента;

Размерный износ режущего инструмента;

Жесткость системы СПИД.

Под точностью станка понимают, прежде всего, его геометрическую точность, т.е. точность в ненагруженном состоянии. Различают станки четырех классов точности: Н (нормальной), П (повышенной), В (высокой), А (особо высокой). При проверке станков на соответствие нормам точности выявляют точность геометрических форм и положения базовых поверхностей, точность движений по направляющим, точность расположения осей вращения, точность обработанных поверхностей, шероховатость обработанных поверхностей.

Точность станков с ЧПУ характеризуют дополнительно следующие специфические проявления: точность линейного позиционирования рабочих органов, величина зоны нечувствительности, т.е. отставание при смене направления движения, точность возврата, стабильность выхода в заданную точку, точность в режиме круговой интерполяции, стабильность положения инструмента после автоматической смены.

Следует отметить, что для станков с ЧПУ стабильность выхода рабочих органов в заданную точку часто важнее чем сама точность станка. Для сохранения точности станка в течении длительного времени эксплуатации нормы геометрической точности при изготовлении станка по сравнению с нормативными ужесточают на 40%, резервируя тем самым запас на изнашивание.

Точность системы управления. Точность системы управления, прежде всего, связывают с работой в режиме интерполяции – режим при котором система осуществляется управления одновременно несколькими осями. Отклонения, связанные с работой интерполятора не превышают цены дискреты. Для современных станков с ценой единичных импульсов 0,001-0,002 мм погрешность является незначительной, но проявляется в виде отклонений микрогеометрии, т.е. шероховатости.

Весьма существенными могут оказаться погрешности, не зависящие от работы интерполятора, но проявляющиеся в режиме интерполяции. Их причиной является систематическая ошибка в передаче движения приводами подач. Эти ошибки возникают в кинематической цепи двигатель привода подач – редуктор – ходовой винт – датчик. При движении по одной оси такие ошибки проявляются виде неравномерности движения рабочих органов и практически не влияют на результат обработки. Однако при движении по нескольким осям неравномерность движения даже по одной оси приводит к погрешности обработки виде волнистости обработанной поверхности.


Погрешности установки заготовок. Погрешность установки определяется суммой погрешностей базирования и закрепления. Погрешность базирования возникает вследствие несовмещения установочной базы с измерительной. На станках с ЧПУ имеется возможность достижения более высоких точностей, когда за один установ обрабатывают измерительные базы и все поверхности, размеры которых отсчитаны от этих баз.

При закреплении заготовок возможны ее смещения под действием зажимных сил. Смещение заготовки из положения определяемого установочными элементами приспособления, происходит вследствие деформаций отдельных звеньев цепи: заготовки, установочных элементов, корпуса приспособления. В связи с неоднородностью качества поверхностей и нестабильностью удельных нагрузок компенсировать возникающие деформации при помощи коррекции инструмента невозможно.

Погрешности наладки инструментов на размер. При наладке инструмента на размер вне станка независимо от точности используемого прибора возникают погрешности. Эти отклонения определяются погрешностью самого прибора и погрешностью закрепления налаженного на размер инструмента. Такую погрешность компенсируют после пробного прохода.

Погрешности наладки станка на размер. Наладка станка на размер заключается в согласованной установке налаженного на размер режущего инструмента, рабочих элементов станка и базирующих элементов приспособления в положение, которое с учетом явлений происходящих в процессе обработки, обеспечивает получение требуемого размера. Погрешность наладки станка возникает вследствие того, что невозможно расположить рабочие элементы станка и инструменты точно в расчетное положение. Для обеспечения требуемой точности изготовления наладчик использует пробные ходы. Под регулировкой установочного размера понимают восстановление установочного размера, изменившегося вследствие размерного изнашивания инструментов или температурной деформации системы. Для того чтобы сократить количество подналадок на протяжении обработки партии деталей необходимо правильно выбрать установочный размер. Рекомендуется установочный размер выбирать таким образом, чтобы он отстоял от нижней или верхней границы поля допуска на 1/5 поля. Ближе к нижней границе следует налаживать инструменты при обработке наружных поверхностей, а ближе к верхней при обработке внутренних поверхностей.

Погрешности изготовления инструмента. При фасонной токарной обработке поверхность формируется различными точками, лежащими на закругленной части резца. Современные УЧПУ позволяют программировать коррекцию на радиус инструмента. При отсутствии такой возможности необходимо радиус закругления при вершине резца учитывать при составлении программы обработки. Необходимо помнить о том, что для режущий инструмент изготавливают с некой допустимой погрешностью, которую также необходимо учитывать при программировании обработки.

Размерный износ режущего инструмента. В процессе обработки режущий инструмент подвержен изнашиванию, что в свою очередь влияет на погрешность обработки. Критерием износа является размер площадки износа по задней грани. Изнашивание инструмента вносит в первоначальную наладку систематическую погрешность т.е. действительный размер обработанной поверхности выходит за пределы поля допуска, через некоторый интервал времени, требуется подналадка. Период подналадки зависит от интенсивности изнашивания инструмента. Коррекция (подналадка) на износ инструмента может быть автоматической или ручной. При ручной коррекции оператор вносит изменения в наладку через определенный интервал времени, а при автоматической коррекцию размера осуществляет система ЧПУ по программе.

Жесткость системы СПИД. Упругие деформации. Как отмечалось ранее, система СПИД представляет собой упругую систему. Под жесткостью упругой системы понимают ее способность оказывать сопротивления деформирующему действию. При недостаточной жесткости под действием сил резания происходит деформация системы СПИД, что вызывает погрешности формы и размеров обработанной поверхности. Погрешности связанные с недостаточной жесткостью системы тем выше, чем выше нагрузки (т.е. чем больше силы резания). Для уменьшения указанных погрешностей необходимо уменьшить размер снимаемого за один проход слоя металла. Необходимо отметить, что станки с ЧПУ как правило имею жестокость на 40-50% выше чем универсальное оборудование, что позволяет вести обработку за меньшее количество проходов.

Тепловые деформации и деформации от внутренних напряжений заготовки. В процессе работы оборудования происходит нагрев всех элементов и узлов станка. Эти деформации весьма существенны, например нагрев стального стержня длиной 1м на 1º С приводит к удлинению его на 11 мкм.

Тепловые деформации протекают интенсивно в начальный период работы станка после чего величина деформации стабилизируется и не влияет на дальнейшую работу. Изменения протекающие в начальный период могут значительно повлиять на точность обработки, поэтому необходим прогрев станка до начала обработки деталей. Также следует избегать продолжительных остановок оборудования.

Тепло, выделяемое в зоне резания, способствует нагреву заготовки, особенно при многопроходной черновой обработке на высоких скоростях резания. При этом происходит ее деформация. Для того, чтобы получить высокую точность необходимо перед началом чистовой обработки обеспечить охлаждение заготовки. Для этих целей применяют обработку с использованием СОЖ, а при обработке нескольких заготовок (на многоцелевых) станках используют также рациональную схему обработки, при которой осуществляется выдержка времени на стабилизацию температуры. Кроме того, высокоточные станки устанавливают в термоконстантных помещениях.

Заготовкам присущи внутренние напряжения, образующиеся при неравномерном охлаждении отдельных частей заготовки при их изготовлении. С течением времени внутренние напряжения выравниваются, а заготовка деформируется. Особенно активно протекает процесс деформации после снятия поверхностных слоев, имеющих наибольшие напряжения. Для уменьшения воздействия таких деформаций следует разделять черновые и чистовые деформации, а для получения высокоточных деталей следует между черновой и чистовой операцией выполнять естественное или искусственное старение.